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INVITED ARTICLE

Theory and numerical simulation of field-induced director dynamics in confined nematics
investigated by nuclear magnetic resonance

A.F. Martins* and A. Véron

CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,

2829-516 Caparica, Portugal

(Received 13 January 2010; accepted 8 April 2010)

We investigate the director reorientation in a nematic liquid crystal confined between two parallel plates and
subjected to both a magnetic and an electric field. The permanent magnetic field is used first to align the director
and, subsequently, to allow nuclear magnetic resonance (NMR) observation of the director response following the
application of the electric field. For sufficiently strong electric fields, the director reorients and aligns parallel to the
electric field. In this work we focus on the geometry where the electric and magnetic fields are orthogonal to each
other. In this configuration the state of the system, immediately after applying the orthogonal electric field, is steady
and unstable, at least in theory, since the director is assumed to be everywhere parallel to the magnetic field.
In practice the real state of the system always deviates slightly from the perfect unstable steady state, which induces
the start of the director reorientation toward the electric field. The nature and the characteristics of the initial
deviation partially determine the reorientation process. In the classical approach, the small deviations from the
ideal state are assumed to be due to thermal fluctuations, but this approach fails to account for some recent
experimental results. For this reason we were led to investigate slightly non-uniform initial director configurations
that are stable under the sole effect of the magnetic field but are sufficient to break the ideal unstable steady state
created with the application of the orthogonal electric field. Such non-uniformities must be local or distributed over
very small sample volumes, since their effects on the equilibrium NMR spectrum (before the application of the
electric field) are not usually observed. In other words, we consider the presence of inversion walls in the bulk of the
sample and local misalignments of the director on the boundary plates and investigate the effects of such non-
uniformities on the response of the nematic to the application of the electric field, as observed by NMR. The model
we propose, including such effects in parallel with thermal fluctuations, is able to account for the recently observed
features of the field-induced director dynamics.

Keywords: nematic liquid crystal; Leslie–Ericksen; director reorientation; progressive mode; soliton mode

1. Introduction

It is of practical and theoretical interest to understand

the response of a nematic liquid crystal initially close to

an unstable steady state. Such configurations are easily

obtained experimentally by applying an electric or a
magnetic field on a previous stable state. A perfect

unstable steady state is obtained when the field is applied

normal to a fully aligned director field. However, in

practice small deviations with respect to the perfect

unstable steady alignment always arise, which causes

the director reorientation toward a new steady state.

The characteristics of the small initial deviations from

perfect alignment dictate, at least partially, the subse-
quent time evolution. Until recently these initial devia-

tions were always assumed to result from thermal

fluctuations, i.e. small amplitude deviations extending

over the whole sample. In a previous work we pointed

out that the occurrence of a different kind of initial

misalignments in real systems deserves to be considered;

namely some strong and stable deviations localised in

small regions of the sample [1, 2]. In this paper we detail

some basic aspects of the previous results and explore

the effects of a combination of both kinds of initial

director deviations from perfect alignment.

When the misalignment of the director with respect

to the direction imposed by the aligning magnetic field is

only due to thermal fluctuations with small amplitudes,

the reorientation following the sudden application of a
sufficiently strong and orthogonal electric field (or a p/2

rotation of the sole magnetic field) manifests itself by the

growing of one particular Fourier mode already present

in the thermal fluctuation. Such a reorientation process

has a typical deuterium nuclear magnetic resonance

(NMR) signature: the initial quadrupolar doublet char-

acterising the initially aligned sample gives rise to an

additional broad doublet with time-dependent splitting

while simultaneously the initial steady doublet with con-

stant splitting progressively vanishes [3–5]. Some recent

experimental data show NMR spectra with a different

time evolution [6–8]. In this case, the application of the

Liquid Crystals,

Vol. 37, Nos. 6–7, June–July 2010, 747–771

*Corresponding author. Email: asfm@fct.unl.pt

ISSN 0267-8292 print/ISSN 1366-5855 online

# 2010 Taylor & Francis

DOI: 10.1080/02678292.2010.485837

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1

mailto:asfm@fct.unl.pt
http://www.informaworld.com


strong orthogonal electric field gives rise to the appear-

ance of a new doublet with vanishing amplitude that

progressively grows with constant splitting so that the

total spectral intensity is essentially transferred from the

initial doublet to the new one (with half the quadrupolar

splitting). It should, however, be noted that non-negligi-

ble intensity arises in the central part of the later spec-
trum indicating some more complex behaviour. There

are also experiments where the recorded spectra show

some superposition of both features described here.

These new results strongly suggest that the initial state

is not simply homogeneous and perturbed by thermal

fluctuations but some local inhomogeneities of the direc-

tor field must be present in the initial state. Such non-

uniformities must be local or distributed over very small
sample volumes since their effects on the equilibrium

NMR spectrum (before the application of the electric

field) are not usually observed. It is, therefore, necessary

to analyse the nematic response from an initial state

exhibiting locally some strong misalignments of the

director that moreover are stable under the effect of the

initial aligning field. To this end, we will consider in this

work two kinds of initial configuration: (i) in the first one
(called C1 in later sections) the director is strongly

anchored on one plate but the orientation of the easy

axis on the plate exhibits some inhomogeneity around

one point, or it is homogeneous but not parallel to the

initial aligning field; (ii) in the second kind of configura-

tion (called C2 in later sections) the director field exhibits

several equidistant inversion walls normal to the plates.

More precisely, we consider a nematic liquid crystal,
4-n-pentyl-40-cyanobiphenyl (5CB), confined between

two parallel plates (electrodes). Initially a magnetic field

parallel to the plates aligns the director everywhere except

within regions with negligible volume (as compared with

the sample volume). At time t¼ 0 an electric field normal

to the plates is applied (via a voltage applied to the

electrodes), whose magnitude is such that the alignment

of the director with this field constitutes the new (funda-
mental) steady state. Briefly, in regions well-aligned with

the magnetic field, the torque on the director is still

vanishing while within the misaligned regions the director,

already tilted toward the electric field, is subjected to a

strong torque forcing the reorientation towards this field.

Subsequently, a region already aligned forces adjacent

regions to align as well, under the effect of curvature

elasticity. However, this simple picture is usually per-
turbed by the occurrence of backflows in a complex way

[3–5]. The purpose of this paper is to investigate accu-

rately how the new steady state emerges from the initial

one (with stable locally misaligned regions), eventually

perturbed by thermal fluctuations. To simplify the analy-

sis we will assume that the system is invariant by transla-

tion along the normal to the plane defined by the two

orthogonal fields, which is certainly rather close to reality.

2. Theory

We now briefly give the main equations used in this

work; they are directly derived from the equations of

the Leslie–Ericksen theory [9, 10] when the inertial and
convective terms are neglected. The material parameters

of this theory are the Leslie viscosities ai (i ¼ 1, . . ., 6)

and the Frank elastic constants K1, K2 and K3 [11]. It

should be noted that the six Leslie viscosities are not

independent since they satisfy the Parodi relation a2 þ
a3 ¼ a6 - a5 [12]. It is, moreover, usual to define the

additional viscous rotational coefficient �1 ¼ a3 - a2.

The time evolution of the director n subjected to a
flow with velocity V reads

�1
@ ni

@ t
¼ �a2nkVi;k � a3nkVk;i þ hi þ lni i ¼ 1; 2; 3;

(1)

where h is the molecular field [10] and l is a Lagrange
multiplier to account for the condition n � n ¼ 1 or

equivalently ni@ ni=@ t ¼ 0. The molecular field may be

decomposed into an elastic and a field contribution,

noted hel and hfield, respectively. The elastic contribu-

tion is given by

hel
i ¼K2ni;jj þ ðK1 � K2Þnj;ji þ ðK3 � K2Þnjni;jnk;k

þ ðK3 � K2Þnjnkni;jk þ ðK3 � K2Þni;jnknj;k

� ðK3 � K2Þnjnk;jnk;i: (2)

i; j; k ¼ 1; :::3:

When the sample is subjected to the magnetic and

electric fields defined by

(
B ¼ BuB "t

EðtÞ ¼ EðtÞuE with

�
EðtÞ ¼ 0 "t < 0

EðtÞ ¼ E "t > 0;

(3)

where uB and uE are two constant unit vectors, the

field contribution hfield reads

hfield ¼ wa

m0

B2 n � uBð ÞuB þ r n � uEð ÞuE½ �; (4)

where

rðtÞ ¼ e0m0ea

wa

EðtÞ
B

� �2

: (5)

In Equations (4) and (5) m0 and e0 are the magnetic

permeability and the dielectric permittivity of the

vacuum, wa is the material’s diamagnetic anisotropy

and ea is the material’s dielectric anisotropy. According
to Equations (3) to (5) the magnitude of the electric field

for t . 0 will be defined by the value of the dimensionless

parameter r, namely, r¼ 0 for t , 0 and r � 0 for t . 0.
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Within the assumptions used in this work, for any

director configuration the velocity field cancels the

divergence of the total stress tensor sij (i.e. the force

density vanishes everywhere), which reads spi,p ¼ 0
(i, p ¼ 1, 2, 3). The total stress tensor is the sum of a

viscous contribution, sv
ij, and an elastic contribution,

sel
ij , defined by

sv
ij ¼ �ijpqVp;q þ a2nioj þ a3njoi i; j; p; q ¼ 1; 2; 3 (6)

and

se
ij ¼ �K2nk;ink;j � ðK1 � K2Þnl;lni;j

� ðK3 � K2Þninlnk;lnk;j i; j; p; q ¼ 1; 2; 3:
(7)

In Equation (6)oi stands for the director velocity @ ni=@ t

and �ijpq (i, j, p, q¼ 1, 2, 3) denotes some general viscous
coefficients that, within the scope of the Leslie–Ericksen

theory, take the following particular form:

�ijpq ¼
1

2

2a1ninjnpnq þ a4 �ip�jq þ �iq�jp

� �
þða5 þ a2Þninp�jq þ ða5 � a2Þninq�jp

þða6 þ a3Þnjnp�iq þ ða6 � a3Þnjnq�ip

8><
>:

9>=
>;

i; j; p; q ¼ 1; 2; 3:

(8)

The equation spi; p ¼ 0 (i, p ¼1, 2, 3) determining the

velocity (for a given director configuration) may be

cast in the form

mijklVj;kl þ �ijkVj;k þ Si � P;i ¼ 0 i; j; k; l ¼ 1; 2; 3; (9)

where

�ijk ¼ �pijk; p

mijkl ¼ �kijl

�
i; j; k; l; p ¼ 1; 2; 3: (10)

In Equation (9) P denotes the pressure and the vector

S is defined by

Si ¼
@

@xp

a2npoi þ a3niop

� �
þ se

pi;p i; p ¼ 1; 2; 3: (11)

Equation (9) possesses the following property: in the

absence of external cause of flow, such as shearing or
imposed pressure gradient, the velocity is non-null if

and only if the vector field S is not purely irrotational

(i.e. H � S � 0). Indeed for an irrotational field S a

scalar field F exists such that S¼H F, in this case V¼ 0

with P ¼ F solves Equation (9) and satisfies the con-

venient boundary conditions. Conversely V ¼ 0

entrains S ¼ HP and S would be irrotational. It

appears that the vector S is responsible for the back-
flow. By analogy with a Poisson equation, the term S is

called a source term; note that such a term is absent

from classical hydrodynamics.

It is worth recalling that without external source

of flow the velocity vanishes for any steady inhomo-

geneous director field, i.e. a director field satisfying hi

þ l ni ¼ 0. In this case @n/@t ¼ 0 and S reduces to the

divergence of the Ericksen stress tensor. Since this

latter quantity does not vanish for an inhomogeneous

steady director one might expect occurrence of flow; it
is actually not the case because the divergence of the

Ericksen stress tensor is an irrotational field for any

steady director configuration (see note 1) [10].

3. Results and discussion

3.1 Description of the investigated system

We consider a nematic liquid crystal confined between

two parallel plates a distance d apart as shown in

Figure 1. Before starting the director reorientation,

the sample is subject to a magnetic field that aligns

the director in the most part of it. At time t ¼ 0 an

electric field normal to the plates is applied with a

magnitude strong enough to dominate the magnetic

field and to force the director to align parallel to the
electric field. According to this geometry (see Figure 1)

the system may be seen as bidimensional, since the

director is maintained within the plane defined by the

two fields; for that reason this plane is chosen as

the 2D domain of integration and consequently the

gradients arising normal to this plane are neglected.

The x1 axis and the associated unit vector e1 are chosen

normal to the plates while the x2 axis and the unit
vector e2 are chosen parallel to the plates in such a

way that the magnetic field lies within the plane

(x1, x2). The x3 axis and the unit vector e3 are chosen

in order to get a right-handed system of axes. It follows

that Equation (1) must be solved with the additional

conditions n3, ni;3 ¼ 0 and ni;j3 ¼ 0 (i, j ¼ 1, 2, 3).

x1 

x2 

E

B n
θ

d

L

Figure 1. Geometry used in this work. The electric field, E,
is normal to the plates and parallel to the x1 axis, while the
magnetic field, B, is parallel to the plates.
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Moreover, the absence of gradients along x3 also

applies to the velocity for consistency. It turns out

that the assumptions for the director entrain a particu-

lar structure for the coefficients mijk l and �ijk in
Equation (9) such that the component V3 appears

uncoupled to the two other components; remarking

moreover that we also have S3 ¼ 0 for the homoge-

neous director along the x3 axis, it follows that V3 ¼ 0

with P3 ¼ 0 solves Equation (9) for i ¼ 3. Accordingly,

the three dimensional system of equations formed by

Equations (1) and (9) reduces to a two-dimensional

system of equations within the plane (x1, x2). The
domain of numerical integration is defined by 0 , x1

, d, with d the distance between the plates and 0 , x2 ,

L, where L is not necessarily the length of the real cell.

The magnetic and electric fields being parallel and

normal to the plates, respectively, the general

Equation (4) may be particularised by setting uB ¼ e2

and uE ¼ e1, which yields

hfield ¼ wa

m0

B2 ðr� 1Þn1e1 � n3e3 þ n½ �: (12)

Remarking that the term proportional to n in

Equation (12) may be dropped (see note 2) and con-

sidering a director lying within the plane (x1, x2), the
field contribution to the molecular field reduces to

hfield ¼ wa

m0

B2ðr� 1Þn1e1: (13)

It appears that for r . 1 the superposition of the two
external fields is equivalent to one single effective align-

ing field normal to the plates and with the magnitudeffiffiffiffiffiffiffiffiffiffiffi
r� 1
p

B. It follows that when an electric field corre-

sponding to r . 1 is applied, the previous state becomes

unstable. On the other hand, it is worth noting that

switching the electric field on corresponding to r ¼ 2 is

(almost) equivalent to rotating the magnetic field by p/2.

Equations (1) and (9) are solved with the follow-
ing boundary conditions. For the free boundaries at

x2 ¼ 0 or x2 ¼ L periodic boundary conditions are

used for the velocity and the director. Given that the

source term S in Equation (9) involves the spatial

derivative of w ¼ @n/@t we also need boundary con-

ditions for w at x2 ¼ 0 or x2 ¼ L, they must be

periodic as well in order to be consistent with the

boundary conditions for the director. On the bound-
ing plates (i.e. at x1 ¼ 0 and x1 ¼ d) the velocity

vanishes and the director is rigidly anchored for the

configuration C1 or weakly and homeotropically

anchored for the configuration C2. More precisely,

for the configuration C1 we take n ¼ (0,1,0) on the

plate at x1¼ d while the x2 dependence of the director

on the plate at x1 ¼ 0 is defined by

n1 ¼ cos �
n2 ¼ sin �
n3 ¼ 0

8<
:

;
(14)

with

�ðx2Þ ¼
p
2
� �0 þ A exp � 1

2

x2 � x20

s

� 	2
� �� 


: (15)

This Equation (15) defines a misalignment of the

director over the plate, centred at x2¼ x20 with ampli-

tude A and spatial extension s. The parameter �0

determines the director orientation over the plate out-

side the misalignment region (i.e. for |x2 – x20| .. s);
for �0 ¼ 0 the anchoring is parallel to the plate, while

for �0 ¼ p/2 it is homeotropic. We might consider that

the localised misalignment centred at x1 ¼ 0, x2 ¼ x20

is actually the trace in the plane (x1, x2) of a misalign-

ment extended around a straight line parallel to the x3

axis (for simplicity). If the misalignment is quite

homogeneous along this line, i.e. along the x3 axis,

we might expect some homogeneity of the flow along
the part of the x3 axis where the misalignment exists.

This kind of extended misalignment is in good agree-

ment with the assumption of null gradient along x3

used in this work. Finally, a physical meaning might

be attributed to the parameter L; it might be the mean

length separating neighbouring misaligned regions on

the plate. With this interpretation of L it is sufficient to

perform a simulation for a domain with length L and
containing just one misalignment region.

Concerning the configuration C2, the inversion

walls are generated by using the function

�ðyÞ ¼ tan�1 sinh
y

Lc

� �� �
(16)

with

Lc ¼
wa

m0

B2

K

� ��1=2

; (17)

which is a solution of the differential equation

L2
cd2�=dy2 þ sin � cos � ¼ 0; this latter equation is a

particular case of Equation (1) with V ¼ 0, n given

by Equation (14) and the spherical approximation, i.e.

K1¼K2¼K3¼K. Remarking that � varies from -p/2

for y! -1 toþp/2 for y!þ1 it appears that, in the

first approximation, �(y) defined by Equation (16)
describes one inversion wall placed at the origin and

Lc is a characteristic length determining the depth of

the wall. A configuration with several walls may be

defined by superposing the functions �(y-yk) where yk

denotes the position of the kth wall via
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�ðyÞ ¼
X

k

ð�1Þk�ðy� ykÞ: (18)

The alternate signs in Equation (18) yield a set of

walls in which the director alternatively rotates by þp
or -p when the coordinate y increases. For both sys-

tems an analytical director profile is used to start the

numerical calculations, but actually this profile is not

exactly stationary; for that reason in a preliminary stage
Equation (1) is solved with V ¼ 0, r ¼ 0 and with the

analytical profile used as the initial condition in order to

relax it toward the steady profile closest to the analy-

tical one. At the end of this stage we obtain the steady

initial state exhibiting some local misalignment.

A thermal fluctuation of � around �0 is defined by

considering the Fourier series decomposition of � - �0;

we find

�ðx1; x2Þ ¼ �0 þ
XN

n¼0

XM
m¼0

Anm sin nq1x1 þ fð1Þn

� 	

sin mq2x2 þ fð2Þm

� 	
;

(19)

with A00¼ 0, q1¼ 2p/d, q2¼ 2p/L and where N and M

denote the number of modes necessary in practice to

describe the fluctuation. For |� - �0| ,, p the total free

energy F reads (see note 3):

F ¼
XN

n¼0

XM
m¼0

Fnmð�0ÞA2
nm (20)

with

Fnmð�0Þ ¼
dL2

4

1þ �m0ð ÞF1 �0ð Þn2q2
1 þ 1þ �n0ð ÞF2 �0ð Þm2q2

2

þ wa
m0

r� 1ð ÞB2 1þ �n 0 þ �m 0ð ÞG �0ð Þ

" #

(21)

and

F1ð�Þ ¼ 1
2

K1 sin2 �þ K3 cos2 �
� �

F2ð�Þ ¼ 1
2

K1 cos2 �þ K3 sin2 �
� �

Gð�Þ ¼ 1
2

cos2 �� sin2 �
� �

:

8><
>: (22)

It follows from Equation (20) that the probability

distribution of each amplitude Anm according to sta-

tistical mechanics is Gaussian with null mean value
and its variance s2

nm is given by

s2
nm ¼

kBT

2Fnm

; (23)

where kB denotes the Boltzmann constant and T the

temperature. It is worth noting that the expression for

s2
nm, i.e. the mean value of A2

nm, entrains the mean energy

kBT/2 per mode (see Equations (20) and (23)), in agree-

ment with the equipartition of energy theorem.

Concretely, one thermal fluctuation is generated numeri-

cally by generating random numbers Anm with the ade-

quate Gaussian distribution. On the other hand, since

the phases fð1Þn and fð2Þm do not appear in the total free
energy (see Equations (20) to (22)), they are uniformly

distributed over the interval [0, 2p]. With these equations

we can find that the mean amplitude of |� - �0| is very

small (, 0.1�), presumably because the modes with wave

vector parallel to the x3 axis are neglected in the two-

dimensional approach used here. Accordingly, the

expression of � - �0 given by Equation (19) is multiplied

by an ad-hoc coefficient that, moreover, allows us to
adjust the amplitude of the fluctuations. In this work

this ad-hoc coefficient has been fixed in such a way to

obtain fluctuations with magnitudes of the order of 1�.
For t � 0, Equation (1) for the director and

Equation (9) for the velocity are solved iteratively, i.e.

the director (velocity) equation is solved at each step

with the velocity (director) field obtained at the pre-

vious step. The director equation is solved by using the
fourth order Runge–Kutta explicit scheme, and the

velocity equation is solved by using the Successive

Over-Relaxation iterative scheme, while evaluating the

pressure by solving a Poisson equation [13]. The results

discussed in this work have been obtained with (i) the

material coefficients of 5CB at TNI – T ¼ 10�C [13, 14]

given here in Table 1, (ii) the field parameters B ¼ 4 T,

r ¼ 2 and wa=m0 ¼ 1:14 and (iii) the geometrical para-
meters d¼ 50 mm, L¼ 100 mm, L¼ 200 mm or L¼ 250

mm, x20¼L/2 and s¼ 5 mm. The value of d corresponds

to a real set-up while the choice of L is a compromise

between time consuming considerations and the

assumption that L should be much larger than d. For

the configuration C1 several sets of parameters have

been used, namely, �0 ¼ 0 with A ¼ 0.8, �0 ¼ p/4 with

A¼ 0 and �0¼ p/4 with A¼ 0.8. For the configuration
C2, two and four inversion walls have been considered.

Concerning the numerical parameters, we have used the

time increment �t ¼ 15ms and the space increments

�x1 ¼ �x2 ¼ 0:31mm.

Table 1. Material parameters for 5CB at
TNI –T ¼ 10�C.

Leslie viscosities [14] Frank elastic constants [15]

a1 ¼ �0:006Pa s�1

a2 ¼ �0:081Pa s�1

a3 ¼ �0:005Pa s�1

a4 ¼ 0:065Pa s�1

a5 ¼ 0:064Pa s�1

a6 ¼ �0:022Pa s�1

K1 ¼ 1:15� 10�11N

K2 ¼ 0:60� 10�11N

K3 ¼ 1:53� 10�11N
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3.2 The primary and secondary initial states

The electric field is applied at time t ¼ 0 on an equili-

brium state. Since we neglect inertia in both equations

for the director and the velocity we are led to distinguish
the state at time t ¼ 0þ immediately after applying the

electric field from the equilibrium state at time t ¼ 0-

immediately before; it is because a flow develops ‘instan-

taneously’ under this approximation. Accordingly, we

call primary and secondary initial states the states at

times t ¼ 0- and t ¼ 0þ, respectively. In the primary

initial state there is no flow and the director satisfies the

equation hi þ lni ¼ 0 with r ¼ 0 (see Equation (1)) and
the boundary conditions for the director specified in

Section 3.1. In the secondary initial state the director

profile is identical to that of the primary state (there is

no change in the director field during an infinitesimal

interval of time), but the director velocity w ¼ @n/@t

becomes suddenly non-null because of the sudden

increase of the coefficient r in the molecular field at

time t ¼ 0. The inhomogeneous director profile implies
an inhomogeneous director velocity w that, except for a

very particular case, surely implies a non purely irrota-

tional source term S in the velocity equation (Equation

(9)); accordingly, we also expect V � 0 as soon as r � 0

in the presence of an arbitrary misalignment in the direc-

tor field. It is, however, not sufficient to stop the reason-

ing at this point; indeed the non-null velocity requires a

revaluation of the director velocity, w, because this latter
quantity depends on the velocity gradients (see Equation

(1)). In conclusion, to characterise fully the secondary

initial state requires solving a set of two coupled equa-

tions for V and w while maintaining the director fixed.

The particular iterative procedure used to evaluate V

and w at time t ¼ 0þ is described in more detail here.

According to Equation (1) at time t¼ 0- the equilibrium

is expressed by

hel
� þ ðwa=m0ÞB2 n� � uBð ÞuB þ lð0Þn� ¼ 0

(the subscript – (þ) indicates that the quantities are

evaluated at time t ¼ 0- (t ¼ 0þ)). A first evaluation of

w at time t¼ 0þ, noted wð1Þþ , is obtained by setting r � 0

in Equation (4), which yields,

�1wð1Þþ ¼ hel
� þ ðwa=m0ÞB2 n� � uBð ÞuB

þ ðwa=m0ÞB2r n� � uEð ÞuE þ lð1Þn

thus use of the previous equilibrium relation yields

�1wð1Þþ ¼ ðwa=m0ÞB2r n� � uEð ÞuE þ lð1Þ � lð0Þ
� 	

n�

where lð1Þ � lð0Þ is the Lagrange multiplier associated

with the condition wð1Þþ � n� ¼ 0. Inserting wð1Þþ in

Equation (9) and solving this equation yields a first

evaluation of the flow velocity, denoted by V
ð1Þ
þ . It

follows that wð1Þþ cannot represent the true director velo-

city since it has been evaluated with the wrong velocity

V ¼ 0; a better evaluation of wþ, denoted by wð2Þþ , is

given by

�1wð2Þþi ¼ �a2n�kV
ð1Þ
þi;k � a3n�kV

ð1Þ
þk;i

þ ðwa=m0ÞB2rðn� � uEÞuE � ei þ lð2Þn� � ei:

Now a new evaluation of the flow velocity, denoted by

V
ð2Þ
þ , is obtained by solving Equation (9) with wð2Þþ repla-

cing wð1Þþ , and so forth. It is necessary to iterate this

procedure several times because the jump in V and w
between t ¼ 0- and t ¼ 0þ is large since the jump in r is

large; in practice we found that ten iterations were

sufficient when r jumps from 0 to 2. In summary, the

numerical procedure is divided into three stages. In a

first stage the primary initial state is calculated by relax-

ing an ad hoc director field under the effect of the
magnetic field and the anchoring. In the second stage

the director and flow velocities of the secondary initial

state are calculated. Finally, in the third stage the classi-

cal resolution of Equations (1) and (9) is performed by

using the secondary initial state as the initial condition

for the relaxation when the electric field is on (r ¼ 2).

Given that n�, the director at time t¼ 0-, is neither

parallel nor perpendicular to uE within the misalign-
ment region, it follows that wð1Þþ does not vanish on the

plate at x1 ¼ 0 and around x2 ¼ x20, in contradiction

with rigid anchoring. However, it should be noted that

the real director velocity is given by

�1wþi ¼ �a2n�kVþi;k � a3n�kVþk;i

þ ðwa=m0ÞB2r n� � uEð ÞuE � ei þ ln� � ei:

Since the velocity gradients do not vanish on the plate,

we may expect to find w! 0 when we approach the

plate within the misaligned region. Actually, we note

that wþ is given by an analytical relation (not a differ-

ential equation) so that the boundary condition for w
is never taken into account in evaluating wþ and con-

sequently this condition has no reason to be satisfied
at time t ¼ 0þ. Despite this feature, the velocity is

continuous on the plate, probably because the bound-

ary condition for the velocity is taken into account

when solving Equation (9). Remarking, moreover,

that the discontinuity of w vanishes for t . 0þ we did

not consider this problem as serious.

3.3 The velocity profile at time t ¼ 0þ in the
configuration C1

Figure 2(a) shows the 2D profile of the initial director

misalignment consistent with the boundary condition

defined by Equation (15). The director is represented
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by a rod with constant length because n is physically

equivalent to -n and n3 ¼ 0. Only the vicinity of the

misalignment centred at x1 ¼ 0 and x2 ¼ x20 ¼ L/2 is

represented, namely within the domain defined by 0�
x1/d � 0.14 and 0.44 � x2/L � 0.56. Obviously, within

the part of the domain not represented in Figure 2(a),

the director is parallel to the magnetic field (i.e. the
rods are vertical). The profile at x1 ¼ 0 is given by

Equations (12) and (13) with �0 ¼ 0 and A ¼ 0.8. The

profile for x1 . 0 has been obtained by relaxation of

the director under the magnetic field and assuming

rigid anchoring on the plate. Figure 3a shows the 2D

profile of the velocity in the same domain as for the

director profile in Figure 2(a). Unfortunately, due to a
great variation of the magnitude of the velocity within

the sample, it is difficult to visualise the stream lines

over a large region with this graphic representation.

For that reason we show in Figure 4 a normalised

velocity field at time t ¼ 0þ, i.e. the field V=jjVjj, it is

0.4

0.45

0.5

0.55

0.6

0 0.2 0.4 0.6 0.8 1

x1/d

2x
/L

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

x1/d

x 2
/L

(a)

 0.6

 0.65

 0.7

 0.75

 0.8

0 0.2 0.4 0.6 0.8 1
x1/d

x 2
/L

(c)

(b)

Figure 2. 2D profile of the director at time t ¼ 0- (a), time
t ¼ 7.5 ms (b) and time t ¼ 15.75 ms (c) in a region of the
sample where the misalignment is strong. The misalignment
on the plate is defined by Equations (12) and (13) with �0¼ 0,
x20 ¼ L/2 and A ¼ 0.8. The steady director field has been
obtained with B ¼ 4 T. The arrows indicate the position of
inversion walls.
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Figure 3. 2D profile of the velocity at time t¼ 0þ (a), time
t ¼ 7.5 ms (b) and time t ¼ 15.75 ms (c) in the vicinity of the
director misalignment shown in Figure 2.
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represented by arrows with constant length indicating

the direction of flow. It appears that the velocity field

at time t¼ 0þ is characterised by the occurrence of two

adjacent rolls with opposite vorticity in the vicinity of

the misaligned region. The two initial rolls are not

symmetric as shown in Figures 3(a) and 4; this is
because the initial director profile is not symmetric as

well (see Figure 2(a)). Although by construction of the

anchoring orientation defined by Equation (13) the

function �(x2) is even with respect to x20, i.e. it exhibits

a mirror plane at x2¼ x20, no symmetry occurs for the

director (e.g. we should have n1(x2) even and n2(x2)

odd to obtain a mirror plane normal to the plates).

Some qualitative features concerning the velocity
field at time t ¼ 0þ may be understood as follows. A

null velocity field is not expected because the source

term has no reason to be irrotational for an arbitrary

misalignment (see end of Section 2). The occurrence of

rolls in the velocity field is dictated by the incompres-

sibility condition V1;1 þ V2;2 ¼ 0, the boundary condi-

tions and the additional assumption that the velocity

should vanish sufficiently far from the misaligned
region, i.e. for x2 ! 	1. These conditions entrain

that both functions V1(x1, x2) and V2(x1, x2) must be

non-null, as expected for rolls. Indeed, because of the

incompressibility condition the assumption V1 ¼ 0

everywhere entrains V2;2 ¼ 0 or V2 ¼ f ðx1Þ, but since

V2 should vanish for x2 ! 	1, we obtain V2 ¼ 0 and

finally V ¼ 0. Likewise, assuming V2 ¼ 0 everywhere

entrains V1;1 ¼ 0 or V1 ¼ gðx2Þ, but since V1¼ 0 on the
plates (i.e. x1 ¼ 0 and x1 ¼ d), we find V1 ¼ 0 and

finally V ¼ 0. On the other hand, the total transversal

flux (flux along x1) and the total longitudinal flux (flux

along x2) vanish, which mathematically readsR
V1ðx1; x2Þdx2 ¼ 0 "x1 and

R
V2ðx1; x2Þdx1 ¼ 0"x2.

These integral relations imply that V1 as a function

of x2 and V2 as a function of x1 must take both

negative and positive values, which is compatible

with occurrence of rolls. Finally, the opposite vorticity

between adjacent rolls allows minimising frictions.

An important feature evidenced at time t¼ 0þ is the

fact that the spatial extension of the initial flow is much

larger than the spatial extension of the misaligned

region, in particular the transversal extension. When
we compare Figures 2(a) and 3(a) it appears that the

alignment is perfect for x1/d . 0.03 while a non-negli-

gible flow still occurs for x1/d . 0.14. Figures 5 and 6

show the transversal profile of n1, V1, V2 and jjVjj at x2/

L ¼ 0.5 (i.e. where the misalignment is stronger, as

shown in Figure 2(a)) for different times. The spatial

extension of any quantity may be defined as the length

of space interval where the quantity is larger than 10% of
its maximum value. Applying this definition to jjVjj we

find that at time t ¼ 0þ the transversal extension of the

flow is one order of magnitude larger than the transver-

sal extension of the misalignment. In contrast, the long-

itudinal extensions of the flow and of the misalignment

have the same order of magnitude. We note that the

maximum of V1 for x2/L¼ 0.5 lies at x1/d¼ 0.077 where

the value of n1 is about 1% of its maximum value at x1¼
0; on the other hand, the maximum of |V2| for x2/L¼ 0.5

lies at x1/d¼ 0.016, where the value of n1 is about 40% of

its maximum value. Accordingly, a non-negligible part

of the initial flow lies outside the misaligned region.

x1/d

x 2
/L

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Figure 4. Stream lines at time t¼ 0þ evidenced by plotting
the 2D profile of V=jjVjj.
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t = 2.25 ms

t = 1.5 ms

t = 0.75 ms
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t = 3.75 ms

Figure 5. Profiles along the x1 axis of n1 at x2/L ¼ 0.5 (a)
for different times; for clarity, the curves are translated by a
multiple of 1. Calculated with B¼ 4 T, r¼ 2, L¼ 250 mm and
d ¼ 50 mm.
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By definition (see Equation (11)) the source term is

large within the misaligned region and vanishes outside

this region. Remembering that no backflow is expected

for a null source term, we may wonder why large back-

flow arises outside the misaligned region. The answer

lies in the mathematical properties of partial differential

equations, whose rigorous analysis is out of the scope of
this work. Such equations describe some complex link

between the cause (here the director configuration) and

its effect (here the backflow). For example, in potential

theory it is well known that the solution of a Poisson

equation, �2F ¼ r, may be cast in the form

FðrÞ ¼
R

Gðr; r0Þrðr0Þdr0 where Gðr; r0Þ is a Green func-

tion [16]. This integral relationship evidences the func-

tional and non-local link between cause and effect: thus
the source r placed at r0 produces an effect (or a field) at

r � r0 so that a field exists even in a region free of charge

(r ¼ 0). The main difference between the equation for

the velocity (see Equation (9)) and a Poisson equation is

the existence of the pressure term associated with the

incompressibility condition; we can, nevertheless,

admit that some similar functional and non-local link

between the director configuration and the velocity
arises as well; for that reason we should not be surprised

to find a flow outside the misaligned region and this

conclusion should be valid at any times.

3.4 Description of the reorientation process for t . 0þ

in the configuration C1

In the earlier times of the reorientation, the initial
double roll extends transversally until reaching the

opposite plate. This is evidenced by the time evolution

of the transversal profile of V1 shown in Figure 6.

During this period, some inversion walls normal to

the plates develop within the region occupied by the

flow. More precisely, the first one develops at x2/L ¼
0.5, i.e. in front of the maximum misalignment, as

evidenced in Figure 7 showing the longitudinal profile
of n1 close to the plate (x1/d ¼ 0.12) and at the very

beginning of the reorientation (t¼ 0.75 ms). An inver-

sion wall in formation is evidenced by the change of
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Figure 6. Profiles along the x1 axis at x2/L¼ 0.5 of V1 (a), of V2 (b) and V ¼ jjVjj (c) for different times; for clarity, the curves
are translated by a multiple of 2. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 250 mm and d ¼ 50 mm.
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Figure 7. Profile along the x2 axis of n1 at time t¼ 0.75 ms
for x1/d ¼ 0.12. An inversion wall is clearly being formed at
x2/L ¼ 0.5. We can see the start up of two additional
inversion walls where n1 changes its sign at approximately
x2/L 
 0.46 and at x2/L 
 0.54. It is worth comparing this
figure with Figure 8 showing the profile V1,2 at the same
position but at time t ¼ 0þ.
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sign of n1. Indeed, under the effect of the torque due to

the effective aligning field (parallel to the electric field)

n1 increases (decreases) as soon as n1 is positive (nega-

tive). Figure 7 also evidences two other less advanced

inversion walls in formation at two symmetric posi-

tions with respect to the first one, namely, x2/L 
 0.46

and x2/L
 0.54. It is instructive to compare the profile
of n1 at an earlier time of the reorientation (like that

shown in Figure 7) with the longitudinal profile of V1,2

at time t ¼ 0þ shown in Figure 8. It appears that both

curves have a very similar pattern, which suggests that

the term proportional to V1,2 in Equation (1) is

responsible for the nucleation of the inversion walls.

Figures 2(b) and 3(b) show the 2D director and velocity

profiles, respectively, at time t ¼ 7.5 ms. In Figure 2(b)

the inversion wall at x2/L ¼ 0.5 is already visible

although not completely formed, while in Figure 3(b)

two rolls are well-defined. Subsequently, new inversion

walls develop at approximately equal intervals of dis-

tance and equal intervals of time. This behaviour is
clearly shown in Figure 9 which represents the long-

itudinal profile of n1 at x1/d ¼ 0.5 for different times.

The time evolution of the pattern for n1 may be

described as two wave fronts propagating along the x2

axis toward each end of the sample. After the passage

of the wave-front the director has adopted a steady

orientation, i.e. n1 takes the values þ1 or –1 except in

a thin region where it goes rapidly from þ1 to -1
(the inversion wall). In contrast, before the passage of

the wave-front the director stays aligned with the

magnetic field. Finally within the wave-front the direc-

tor is in transit from the initial unstable orientation

toward the final steady orientation. For B ¼ 4T,

r ¼ 2 and d ¼ 50 mm, the velocity of the wave-front is

found to be about 6 mm/s.

Figure 10 shows the profile of V1 along x2 at the
same times and x1 abscissa as for the profiles of n1

shown in Figure 9. It appears that the region where the

flow is important coincides with the two wave-front

regions in the director profiles. Accordingly, the time

dependence of the V1 profile resembles the propaga-

tion in opposite directions of two solitons whose posi-

tions coincide with the wave-front for n1. This

behaviour may be understood as follows. Far at the
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Figure 8. Profile along the x2 axis of the velocity gradient
V1,2 at time t ¼ 0þ for x1/d ¼ 0.12.

0 0.2 0.4 0.6 0.8 1

x2/L
0 0.2 0.4 0.6 0.8 1

x2/L

t = 12.0 ms

t = 9.0 ms

t = 6.0 ms

t = 3.0 ms

t = 0.0 ms

t = 27.0 ms

t = 24.0 ms

t = 21.0 ms

t = 18.0 ms

t = 15.0 ms

t = 12.0 ms

t = 9.0 ms

t = 6.0 ms

t = 3.0 ms

t = 0.0 ms

t = 27.0 ms

t = 24.0 ms

t = 21.0 ms

t = 18.0 ms

t =15.0 ms

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

Figure 9. Profiles along the x2 axis of n1 at x1/d¼ 0.25 (left) and x1/d¼ 0.5 (right) for different times; for clarity, the curves are
translated by a multiple of 2. Calculated with B¼ 4 T, r¼ 2, L¼ 250 mm and d¼ 50 mm. The velocity of the wave front is about
6 mm s-1.
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back of the wave-front the director has reached an

equilibrium state in which flow should vanish. On

the other hand, far in the front of the wave-front no

flow arises because we are too far from a non-steady

and inhomogeneous region (i.e. a region where H � S

� 0); for the opposite reason in the region of the wave-

front a flow is expected. Figures 2(c) and 3(c) show the

2D director and velocity profiles in the wave-front
region at time t ¼ 15.75 ms; it appears that two rolls

superpose with the wave-front. In Figure 2(c) we

observe the formation of an inversion wall at about

x2/L 
 0.69, while in Figure 3(c) we observe two rolls

around x2/L 
 0.69 as well. This feature is general; in

the wave-front region the flow always exhibits at least

two (or three) adjacent rolls with different magnitudes

and opposite vorticities. The rolls are elongated along
a direction normal to the plates while filling the space

between the plates. On the other hand, the longitudi-

nal extension and the distance between two consecu-

tive inversion walls are comparable, namely, �x2/L 

0.05 with L ¼ 500 mm, as evidenced in Figures 2(c)

and 3(c).

The propagation of the roll arises as follows: in

general, three adjacent rolls superpose with one wave-
front with different magnitude, one being very weak in

comparison with the other two; the weak roll is either a

roll that has almost vanished or a roll that starts to

emerge. For example, two intense rolls are clearly

observed in Figure 3(c) while a less intense roll is also

visible at the top of this figure. We can call Ra, Rb and

Rc the three visible rolls at a given time, with Ra at the

back of the wave-front and Rc at the front of the wave-

front. With increase of time the roll Ra vanishes (the
director stabilises in this region of the sample) while

the roll Rc reinforces; when the roll Ra has completely

disappeared a new roll Rd starts to emerge in front of

the roll Rc, leading to the new system of three rolls Rb,

Rc and Rd replacing the initial system Ra, Rb and Rc,

and the same behaviour repeats periodically until the

band pattern has invaded the whole sample. After a

sufficiently long time a periodic director pattern with-
out flow results, characterised by a set of (quasi) equi-

distant inversion walls parallel to the electric field; the

walls start from one plate and end at the other plate.

The periodic pattern for n1 and n2 at time t ¼ 30 ms is

shown in Figure 11. This structure seems stable but, as

shown later, this stability is somewhat artificial due to

some very particular anchoring condition (anchoring

orientation parallel to the magnetic field when �0 ¼ 0
in Equation (13)).

It is of interest to determine which parameters

influence the band width. We first note that all the

bands do not have exactly the same width; it appears

that the width of the first band developing in front of

the misaligned region is strongly influenced by the

longitudinal extension of this region; in contrast, the

bands that appear later seem less and less influenced
by the size of the misaligned region. We conclude that

far from the misaligned region the band width tends

towards an intrinsic width. Due to the limited size of

the sample used for the numerical simulation, we have

examined more precisely the dependence of the width
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Figure 10. Profiles along the x2 axis of V1 at x1/d ¼ 0.25 (left) and x1/d ¼ 0.5 (right) for different times; for clarity, the curves
are translated by a multiple of 2. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 250 mm and d ¼ 50 mm.
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of the third band from that appearing initially (in front
of the misalignment at x2 ¼ x20); we found that its

width is independent of the parameter r that defines

the strength of the electric field (or the effective field),

but on the other hand a clear dependence on the dis-

tance d between the plates is evidenced. Figure 12

shows this dependence, which is roughly linear; more-

over, we note that the width of one band is more or less

half the distance between the plates.

3.5 Other misalignment configuration of type C1

It is worth considering some misalignment within a thin

layer in contact with the plate at x1¼ 0. This situation is
obtained by setting �0 � 0 in Equation (13) defining the

director anchoring at x1 ¼ 0. Indeed, that entrains an

angle between the director on the plate and the mag-

netic field so that the primary initial state (at time

t ¼ 0-) obtained by simple relaxation under the effect

of the magnetic field alone exhibits a thin inhomoge-

neous layer in contact with the whole plate in which the
director orientation varies from the anchoring orienta-

tion on the plate to the field orientation in the bulk. A

more particular case is obtained by setting moreover

A ¼ 0 in Equation (13); in this latter case there is no

longitudinal gradient of the director field; as a result,

the velocity at time t ¼ 0þ is parallel to the plates. The

fact that V1¼ 0 and V2 � 0 (which seems contradictory

with what we claimed in Section 3.3 for �0 ¼ 0 and
A � 0) may be understood as follows. The homogeneity

x1/d x1/d

x 2
/L

x 2
/L

Figure 11. Profiles of n1 (left) and n2 (right) at time t ¼ 30 ms. The inversion walls are shown by the white lines for
the profile of n2; except close to x2/L ¼ 0.5 the inversion walls are straight lines starting at one plate and ending at the
opposite plate. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 250 mm and d ¼ 50 mm.
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Figure 12. Spatial period as a function of the distance d between the plates. It is the depth of the third band appearing from the
first one in front of the misalignment region. Calculated with B ¼ 4 T, r ¼ 2.
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of the director along x2 entrains the same homogeneity

for the velocity. Hence, the incompressibility condition

V1,1 þ V2,2 ¼ 0 entrains V1,1 ¼ 0 or equivalently

V1 ¼ const., therefore since V1 vanishes on the plates
it vanishes everywhere. The fact that V2 � 0 in this case

is due to the infinite length of the misaligned layer, so

that we can no longer assert V2 ! 0 when x2 ! 	1 as

for the case �0 ¼ 0 with A � 0.

The main result with �0 � 0 and A ¼ 0 is the

absence of any band pattern; the initial misaligned

layer parallel to the plates broadens uniformly, i.e. by

keeping the homogeneity along x2, until reaching the
opposite plate. However, this configuration, being

unstable with respect to fluctuations with gradients

along x2, cannot describe real systems. The case �0 �

0 and A � 0 yields to a behaviour intermediate

between the two previous ones, namely, �0 ¼ 0 with

A � 0 and �0 � 0 with A¼ 0. A periodic band pattern

develops as for the case �0 ¼ 0 with A � 0, but in the

first stage the initial misaligned layer in contact with
the plate expands towards the bulk, similarly to the

case �0 � 0 and A ¼ 0; however, this development is

stopped by the appearance of the bands. As a result

the inversion walls do not reach the plates at x1 ¼ 0.

Since an inversion wall cannot stop within the bulk

without involving a defect, two consecutive inversion

walls join together in the vicinity of x1¼ 0, leading to

an open loop starting from x1 ¼ d and ending at
another point on the plate at x1 ¼ d. Figure 13,

showing the 2D profiles of n1 and n2 at time t ¼ 30

ms for the case �0 ¼ p/4 with A ¼ 0.8, illustrates this

feature. Note the difference to Figure 11 showing the

same profiles for �0 ¼ 0 with A ¼ 0.8. Obviously, the

same behaviour is expected at the opposite plate, so

that the inversion walls are expected to form closed

loops.
The fact that the inversion walls are no longer fixed

to the plate at x1 ¼ 0 allows the system to minimise its

energy by reducing the length of the inversion walls,

which constitutes a second stage in the reorientation

process following the formation of the bands with a

notably longer characteristic time. For B ¼ 4 T and

r ¼ 2, the length reduces at a rate of about 0.08 mm/s;

thus for plates separated by the distance d ¼ 50 mm
the inversion walls disappear after a time lapse of

about 300 ms (the necessary time to cover d/2, because

in real systems the same behaviour occurs at both

plates); the corresponding time for the first re-

orientation regime is one order of magnitude shorter

for L ¼ 250 mm.

3.6 Mechanism of band formation

With the remarks and observations made in previous

sections we are able to describe the mechanism leading

to the formation of the inversion walls more

accurately:

(1) At time t ¼ 0þ the initial local misalignment

generates a flow in a region notably more

extended than the region where the misalignment
arises.

(2) Accordingly, at time t ¼ 0þ there is a flowing

region where the director is homogeneous and

normal to the aligning field
ffiffiffiffiffiffiffiffiffiffiffi
r� 1
p

Be1 (or equiva-

lently parallel to the magnetic field). Within this

region the elastic and field contributions to the

director velocity @n/@t vanish so that @n/@t is

fully determined by the gradients of the flow velo-
city. More precisely, according to Equation (1),

out of the misalignment region we obtain

�1
@ n1

@ t

����
t¼0þ
¼ �a2nkV1;k � a3nkVk;1 þ ln1

�1
@ n2

@ t

����
t¼0þ
¼ �a2nkV2;k � a3nkVk;2 þ ln2:

8>><
>>: (24)

By setting n1 ¼ cos� and n2 ¼ sin� the angular
velocity @�/@t is given by

�1
@ �

@ t

����
t¼0þ
¼ a2 n2nkV1;k � n1nkV2;k

� �
þ a3 n2nkVk;1 � n1nkVk;2

� �
:

(25)

x1/d x1/d

x 2
/L

x 2
/ L

Figure 13. Profiles of n1 (left) and n2 (right) at time t ¼ 30
ms. The inversion walls are shown by white lines in the profile
of n2; the inversion walls are open loops starting at the right
plate and ending at the same plate. Note the difference with
Figure 11. This structure is not completely stable,
subsequently the loops shrink. Calculated with B ¼ 4 T,
r ¼ 2, L ¼ 200 mm and d ¼ 50 mm.
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At time t ¼ 0þ within the part of flowing region

where the misalignment is negligible we have n1 

n3
 0 and n2
 1, hence the initial angular velocity

may be approximated by

�1
@ �
@ t

���
t¼0þ

 a2V1;2 þ a3V2;1: (26)

(3) The incompressibility condition entrains the forma-

tion of rolls in the flow at time t ¼ 0þ (see Section

3.3). For such a structure of the velocity field, the

gradient V1,2 dominates V2,1 in some regions and,

conversely, V2,1 dominates V1,2 in other regions; but

because of the condition a3j j<< a2j j, that is satisfied

in practice for rod-like molecules, the largest angu-
lar velocity occurs within regions where V1,2 dom-

inates V2,1, and it is given by �1@ �=@ tj t¼0þ
 a2V1;2.

Thus, as revealed by the comparison of Figures 7

and 8 in Section 3.4, the gradient V1,2 determines the

start of the reorientation.

(4) When V1 � 0, the x2 dependence of V1 cannot be

monotonous because V1 must vanish far from the

misalignment region (i.e. when x2 ! 	1); accord-
ingly, there exist at least two regions in the vicinity of

the misalignment where V1,2 is large and with oppo-

site sign. That entrains the rotation of the director in

opposite directions and an inversion wall is

nucleated. Since a2 , 0 (see Table 1), � increases

(decreases) where V1,2 , 0 (V1,2 . 0), or equivalently

n1 decreases (increases) where V1,2 , 0 (V1,2 . 0).

(5) At time t ¼ 0þ within regions where V1,2 domi-
nates, the director is normal to the aligning fieldffiffiffiffiffiffiffiffiffiffiffi
r� 1
p

Be1 and the corresponding torque is null;

but immediately after the slight rotation of the

director in the opposite direction at different posi-

tions, induced by the term a2V1,2 in Equation (26),

the field torque amplifies the initial distortion.

Subsequently, the action of the aligning field rein-

forces, and the formation of the inversion wall is
reinforced also.

(6) When an inversion wall is in formation, a new roll

develops in the region where the director is still

aligned with the magnetic field and a new inver-

sion wall is nucleated. The repetition of this pro-

cess leads to the wave-front propagation. This is

the so-called progressive mode of reorientation [2],

as opposed to the collective mode that is induced
by thermal fluctuations and develops simulta-

neously over the whole sample.

3.7 NMR response for different initial conditions

For an homogeneous director field with the orienta-

tion � the deuterium NMR spectrum is composed of

two lines, which we shall call the doublet, symmetric

around frequency zero and with the splitting ��(�)
defined (see Note 4) by

��ð�Þ ¼ ��0 P2 cos �� p=2ð Þð Þj j
¼ ��0 P2 sin �ð Þj j; (27)

where P2 denotes the Legendre polynomial defined by

P2ðxÞ ¼ ð3x2 � 1Þ=2 and ��0 is a parameter character-
ising the orientational order of the nematic. The NMR

spectra are built numerically from the profile �(x1, x2)

obtained by solving the Leslie–Ericksen equations.

With each node (i, j) of the regular square grid used

for the resolution of the partial differential equations

is associated an elementary doublet with splitting

��(�ij), where �ij denotes the orientation of the direc-

tor at the node (i, j). For the usual and simple model
with Gaussian lineshapes the form of the elementary

doublet associated with the orientation � is defined by

Ið�; �Þ ¼
X

e2 þ;�f g

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ð�Þ

p exp � 1

2

� � eð��0=2ÞP2 sin �ð Þ
sð�Þ

� �2
 !

;

(28)

where s(�) defines the line width. In this work we used
the approximate expression (see [2])

sð�Þ ¼ s0 þ s1 sin2 � cos2 �
� �2=3

(29)

for the angular dependence of the linewidth.

In order to interpret the NMR spectra it is conve-

nient to represent the spectrum by an analytical func-

tion of the director profile. When the director field is

inhomogeneous, the NMR spectrum is a superposition
of the elementary doublets I(�,�) weighted by the prob-

ability density P(�) of finding a director with orienta-

tion �. Accordingly, the full spectrum is given by

Ið�Þ ¼
ð

Ið�; �ÞPð�Þd�: (30)

For the sake of simplicity, and because the spatial
dependence of � is essentially along the x2 axis, in this

work we consider the spectrum associated with an

arbitrary one-dimensional profile �(x2). In this case,

because the distribution in space of the director is

uniform, the distribution P(�) is proportional to

d�=dx2ð Þ�1. It follows that the stationary values �st of

� in the profile �(x2) are predominant in the distribu-

tion of �, and consequently the corresponding doub-
lets with the splitting ��ð�stÞ will be predominant in

the full spectrum as well. For that reason, doublets

with splitting corresponding to extreme values of � in

the profile �(x2) are expected to emerge in the full

spectrum. On the other hand, the second Legendre
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polynomial appearing in the expression of the splitting

��ð�Þ (see Equation (27)) also affects the pattern of

the full spectrum. Indeed, a distribution of directors

between � and �þd� gives a distribution of splitting

between ��ð�Þ and ��ð�Þ þ @��=@�ð Þd�. It follows

that for the stationary values of � in the function

P2(sin�) (i.e. � ¼ 0 or � ¼ p/2) the elementary doublets
accumulate at the same position in the full spectrum.

In other words, the doublets with splitting ��0 and

��0/2, corresponding to � ¼ p/2 and � ¼ 0, respec-

tively, are overrepresented in the full spectrum with

respect to what is expected according to the distribu-

tion of director orientation P(�); it is why for a 2D

isotropic distribution (i.e. P(�) ¼ const) two doublets

with splitting ��0 and ��0/2 emerge. The combina-
tion of these two effects (stationary orientations in the

director profile and in the second Legendre polyno-

mial) allows interpretation of the NMR spectra.

According to the above, we can distinguish two

kinds of doublets in complex spectra: the P2 doublets

associated with the extrema of the Legendre polyno-

mial and �-profile doublets associated with the extrema

of the director profile. Two P2 doublets may exist, one
with the splitting ��0 and the other one with the

splitting ��0/2. Obviously, such doublets will really

exist only if some director population exists with

orientation parallel (splitting ��0) or normal (splitting

��0/2) to the magnetic field; it is, moreover, worth

noting that the intensity of these doublets is very sen-

sitive to the director populations in the vicinity of �¼ 0

and � ¼ p/2, respectively. Unlike the P2 doublets, the
number and splitting of the �-profile doublets are

arbitrary because these characteristics are determined

by the director profile. Thus the occurrence of one

plateau around � ¼ �p in the curve representing the

profile �(x2) will generate a doublet with the splitting

��ð�pÞ, and its intensity will be related to the spatial

extension of the plateau. It follows that for an irregu-

lar profile �(x2) with many plateaus with different
orientations, many doublets will appear; eventually,

if they are sufficiently distributed they may superpose

in such a way as to form a smooth and intense signal in

between the inner P2 doublet.

In this Section we investigate the NMR response

associated with different initial states. In the first stage

we consider an initial director field defined by one

thermal fluctuation around �0 ¼ p/2 without perma-
nent structure. Figure 14 shows the 2D profile of the

director component n1 for such a director distribution;

the random character of thermal fluctuations is man-

ifested by a granular texture. Such an initial condition

leads to the classical mode of reorientation where, in

brief, one Fourier mode of the thermal fluctuation

defined by Equation (19) is selected and amplified

[3–5]. The director and NMR responses after switch-

ing on the electric field are evidenced by the plot of the
longitudinal profile of the angle � defined by Equation

(14) at x1/d ¼ 0.5 (Figures 15(a) to 15(e)) while the

corresponding NMR spectra are shown in Figures

15(a’) to 15(e’). For t ¼ 7 ms (actually for t � 7 ms)

the spectrum essentially exhibits the outer P2 doublet

with the maximum splitting ��0; thus the �-profile

shown in Figure 15(a) (where the maxima of |� - p/2|

are smaller than p/4) only produces some small inten-
sity in the inside base of each peak of the doublet. For t

� 9 ms (some maxima of |� - p/2| slightly exceed p/4) a

new doublet with a time-dependent splitting is clearly

seen, although small in intensity. We may readily

check that its splitting is related to the mean position

of the extrema in the �-profile according to Equation

(27); indeed, for |� - p/2| ¼ p/4 we have �� ¼ ��0/4.

For t¼ 10 ms the splitting of the new doublet vanishes,
because the maxima of |� - p/2| are close to the magic

angle (i.e. 54.74�) for which P2ðcosð�� p=2ÞÞ vanishes,

which seems to be in agreement with Figure 15(c). For

t . 10 ms the maxima of |� - p/2| exceeds the magic

angle, therefore P2ðcosð�� p=2ÞÞ becomes negative

x 2
/L

x1/d

Figure 14. Two-dimensional profile of n1 corresponding to
one thermal fluctuation defined by Equation (19) with N ¼
100 and M¼ 200. Calculated with B¼ 4 T, r¼ 2, L¼ 200 mm
and d ¼ 50 mm.
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but increases in absolute value and the splitting

increases as well (see the spectra for t ¼ 12 ms and

t ¼ 16 ms) until it reaches the value ��0/2, when the

extrema of |� - p/2| tends toward p/2 (see Figures 15(e)

and 15(e’)). Since the spectra are shown with constant

maximal intensity, it is possible to observe the evolu-

tion of the relative intensities of both doublets. With
increasing time, the intensity of the inner doublet

increases at the expense of the outer doublet; this

feature may be correlated to the formation of plateaus

in the function �(x2) that become more and more flat

with increasing time, indicating that these values of �
have a stronger weight in the distribution of �.

Figure 16 shows the NMR response for the case

accurately described in Sections 3.3 and 3.4, i.e. when a
local misalignment occurs at the surface of one

t = 7 ms

t = 9 ms

t = 10 ms

t = 12 ms

t = 16 ms

(a)

(b)

(c)

(d)

(e)

(a’)

(b’)

(c’)

(d’)

(e’)

x2/L

x2/L

x2/L

x2/L

x2/L

θ/
π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

θ/
π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

θ/
π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

θ/
π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

θ/
π

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1

Figure 15. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 7 ms in (a), t¼ 9
ms in (b), t¼ 10 ms in (c), t¼ 12 ms in (d) and t¼ 16 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t ¼ 0 the profile corresponds to one thermal fluctuation. This figure illustrates the
classical reorientation process (called the collective mode). Calculated with B ¼ 4 T, r ¼ 2, L ¼ 200 mm and d ¼ 50 mm.
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bounding plate due to strong anchoring. The time evo-

lution of the NMR spectrum is rather different from

that shown in Figure 15 because it reflects the progres-

sive mode of reorientation (or soliton regime) shown in
Figure 9 while Figure 15 reflects the collective mode

sketched in Figures 15(a) to 15(e). For the soliton regime

the region fully aligned with the electric field propagates

in space, which is demonstrated by the progressive

increase of the intensity of the inner doublet with con-

stant splitting equal to ��0/2. We note that the reorien-

tation is relatively slow in comparison with the collective

mode; indeed, in the soliton regime the velocity of the
wave-front and the length of the sample determine the

duration of the reorientation process; thus the longer the

sample, (or, more precisely, the length between two

consecutive misalignments), the slower the reorientation

process. For the collective mode the duration of the

reorientation is determined by the speed of the director

rotation, which is independent of the size of the sample

but depends on the selected wave-vector. It should be
noted that the intermediate oscillatory region of the

director profile (i.e. the wave-front) should give rise to

several doublets with time-dependent splittings, as for

the collective mode described previously, because of the

occurrence of several extrema. However, when the

length of the intermediate region is small in comparison

with the spatial extension of the two other regions (the

aligned and the non-aligned ones), this effect is quite
negligible (actually only very small undulations can be

distinguished in the spectra of Figure 16). For that

reason the intensity in the central part of the spectrum

is rather small, in disagreement with experimental data.

When one thermal fluctuation is added in the initial

state we essentially retrieve the behaviour shown in

Figure 15, which indicates that the collective mode

strongly dominates the progressive mode in this system.
For that reason it seems difficult to account completely

for the experimental data by simply assuming a local

misalignment on a wall.

Figures 17(a) to 17(e) show the time evolution of

the longitudinal profile �(x2) for x1/d ¼ 0.5 when the

initial state is formed by four inversion walls not per-

turbed by any thermal fluctuations. The walls are

located at positions x2/L equal to 0.125, 0.375, 0.625
and 0.875, which corresponds to equidistant inversion

walls when we take into account the periodic bound-

ary conditions at x2/L ¼ 0 and x2/L ¼ 1). The corre-

sponding NMR spectra at the same times are shown in

Figures 17(a’) to 17(e’). They clearly evidence the

superposition of the two reorientation modes shown

by Figures 15 and 16: indeed, two new doublets arise

during the reorientation, one with constant splitting
equal to ��0/2 and another with time-dependent split-

ting. The main feature of Figures 17(a) to 17(e) is the

t = 15 ms

t = 19.5 ms

t = 22.5 ms

t = 25.5 ms

t = 30 ms

(a)

(b)

(c)

(d)

(e)

Figure 16. Deuterium NMR spectra at calculated
different times, namely, t ¼ 15.0 ms in (a), t ¼ 19.5 ms in
(b), t ¼ 22.5 ms in (c), t ¼ 25.5 ms in (d) and t ¼ 30.0 ms in
(e). At time t¼ 0 the director field exhibits one misalignment
on the plate at x1¼ 0 as described in Section 3.3 and 3.4. This
time dependence reflects the soliton regime evidenced by
Figure 9; note the difference between this and Figure 15.
Calculated with B ¼ 4 T, r ¼ 2, L ¼ 250 mm and d ¼ 50 mm.
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fact that in some regions where � is close to þp/2 (and

smaller than p/2) in the initial state (or -p/2) �
increases towards p (decreases towards -p) instead of

decreasing (increasing) towards zero, which seems to

be the simplest way to relax toward the new equili-

brium state (i.e. � ¼ 0 in the whole sample). This
feature is similar to that evidenced by Figure 5 in

Martins and Véron [2], namely, the director rotates

in one direction opposite to what we would expect

when considering the field and elastic forces only.

This complex behaviour is indeed an effect of back-

flow as evidenced by comparing Figure 17 with Figure

18, obtained for the same conditions except that the

backflow has been cancelled (i.e. solving Equation (1)

with V ¼ 0). Indeed, without backflow the director
relaxes towards the fully homogeneous state without

passing by a complex metastable state with inversion

walls. It should be noted that these two kinds of

t = 3 ms

t = 4 ms

t = 5 ms

t = 6 ms

t = 9 ms
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–0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
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0 0.2 0.4 0.6 0.8 1
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θ/
π

–1

–0.5

0

0.5
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0 0.2 0.4 0.6 0.8 1
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π
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0 0.2 0.4 0.6 0.8 1
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(a)

(b)

(c)

(d)

(e)

(a’)

(b’)

(c’)

(d’)

(e’)

Figure 17. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 3 ms in (a), t¼ 4
ms in (b), t ¼ 5 ms in (c), t ¼ 6 ms in (d) and t ¼ 9 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t¼ 0 the profile �(x2) exhibits four inversion walls at x2/L equal to 0.125, 0.375, 0.625
and 0.875. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 100 mm and d ¼ 50 mm.
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relaxation (i.e. the true relaxation with backflow and

the false relaxation without backflow) produce differ-

ent NMR responses (compare Figures 17(a’) to 17(e’)

with Figures 18(a’) to 18(e’)). Without backflow the

initial doublet progressively vanishes while simulta-
neously the doublet corresponding to a director

aligned with the electric field progressively increases;

this response is similar to that obtained with the

soliton mode (see Figure 16), although resulting from

a different mechanism. On the other hand, we note
that with backflow the relaxation is notably faster

(compare Figure 17(e’) with Figure 18(b’)).

Remarking that integer values of �/p correspond to

director alignment with the electric field while half

integer values correspond to director alignment with

the magnetic field, it appears that the points where the

(c)

t = 5 ms

t = 10 ms

t = 15 ms

t = 20 ms

t = 25 ms

(a)

(b)

(d)

(e)
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Figure 18. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 5 ms in (a), t¼ 10
ms in (b), t¼ 15 ms in (c), t¼ 20 ms in (d) and t¼ 25 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t¼ 0 the profile �(x2) exhibits four inversion walls at x2/L equal to 0.125, 0.375, 0.625
and 0.875. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 100 mm and d ¼ 50 mm.
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curve of the function �(x2) intersects the line � ¼ 0

correspond to the core of the inversion walls. We

observe that some portion of the curve �(x2) around

� ¼ 0, initially close to the vertical, pivots around the

intersecting point until it becomes horizontal. This

feature may be interpreted as an expansion of the

core of the wall in a way similar to the growth of an
initial cluster aligned with the electric field (cluster

mode). It turns out that Figure 18 may be also inter-

preted as reflecting the cluster mode. It follows that

without backflow the cluster mode dominates, while

with backflow the cluster mode contributes to the

doublet with splitting ��0/2 but it is not dominant.

Note, moreover, that cluster and soliton modes have

similar NMR responses (compare Figures 16 and 18)
and may be considered as different manifestations of the
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Figure 19. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 4 ms in (a), t¼ 6
ms in (b), t¼ 8 ms in (c), t¼ 10 ms in (d) and t¼ 12 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t ¼ 0 the profile �(x2) exhibits two inversion walls at x2/L equal to 0.25 and 0.75.
Calculated with B ¼ 4 T, r ¼ 2, L ¼ 100 mm and d ¼ 50 mm.
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so-called progressive mode of reorientation. Figure 19,

obtained with two inversion walls placed at x2/L equal to

0.25 and 0.75 for the same total length L as used in the

simulation that produced Figure 17, shows similar

results. Nevertheless, some small discrepancies arise as,

for example, the number of doublets evidenced in the

spectrum at time t ¼ 10 ms in Figure 19(d’).
The spectrum in Figure 19(d’) for t¼ 10 ms, which

exhibits four inner doublets, is analysed more carefully

in Figure 20. Remembering that any plateau in the �-
profile generates one doublet in the spectrum, it is

possible to relate the peaks with particular portions

of the �-profile. It turns out that the profile at t ¼ 10

ms is formed roughly by several plateaus (eventually

slightly inclined) that can be divided into three cate-
gories, each generating one doublet. The inclined pla-

teau marked with the letter A corresponds to part of

the �-profile that pivots around the point �¼ 0 (cluster

mode); it gives the doublet with a constant splitting

equal to ��0/2 (population in the vicinity of � ¼ 0 a

stationary point of the second Legendre polynomial).

The plateau marked with the letter B corresponds to

the first extremum in the wave-front of the soliton

mode, while the plateau C corresponds to the second

extremum with slightly smaller amplitude; this portion
of the �-profile at equal distance from the two initial

walls is also a region where the two solitons coming

from the two initial inversion walls meet. The position

of the plateaus B and C are not exactly symmetric with

respect to � ¼ 	p/2 and so they give two different

doublets.

Figures 21 and 22 show the director and NMR

response for two inversion walls separated by a dis-
tance of 100 mm (i.e. L ¼ 200 mm in this simulation),

while in Figures 17 and 18 the walls are separated by

25 mm, and in Figure 19 by 50 mm. On the other hand,
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Figure 20. Longitudinal profile of � in (a) and the corresponding deuterium NMR spectrum in (b) corresponding to that in
Figure 19 for t ¼ 10 ms. The three inner doublets marked with the letters A, B and C are associated with three kinds of quasi-
plateaus in the �-profile indicated by the arrows. It is worth noting that this kind of director profile yields high intensity in the
central part of the spectrum.
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one thermal fluctuation is also applied to the initial

state in the case shown in Figure 22. Due to the longer
distance between walls, in Figures 21(a) to 21(e) the

development of the soliton mode is visible between

each initial inversion wall. As for Figure 18(d’) a com-

plex structure appears in the spectrum of Figure 21(c’);

actually the centre of the spectrum is again more

structured because a larger number of plateaus with

different positions arise in Figure 21(c’). The compar-

ison of Figure 22 with Figure 21 indicates that the

effect of a thermal fluctuation is (i) to accelerate
slightly the relaxation (compare Figures 21(c’) and

22(c’)) and (ii) to increase slightly the intensity of the

central part of the spectra at the beginning of the
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Figure 21. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 5 ms in (a), t¼ 8
ms in (b), t¼ 11 ms in (c), t¼ 14 ms in (d) and t¼ 18 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t¼ 0 the profile �(x2) exhibits two inversion walls at x2/L equal to 0.25 and 0.75. The
circles indicate the portion of the �-profile yielding the doublet with the splitting ��0/2 indicated by arrows in Figure 21c’.
Calculated with B ¼ 4 T, r ¼ 2, L ¼ 200 mm and d ¼ 50 mm.
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relaxation (see the spectra at times t¼ 8 ms and t¼ 11

ms). Nevertheless, the effect of the initial thermal fluc-

tuation is relatively weak; in other words, the soliton

mode dominates the collective mode in this system; on
the other hand a small contribution of the cluster

mode also arises (see the circles in Figure 21), this

latter mode produces the emergence of the doublet

with splitting ��0/2 as soon as the reorientation starts

despite the weak director population around � ¼ 0

(n.b. effect of the second Legendre polynomial that

increases the sensitivity for this orientation).
The spectra shown in Figure 16 are not satisfac-

tory because of the lack of intensity between the inner

P2 doublet (i.e. with the splitting ��0/2) in
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Figure 22. Longitudinal profiles of � (defined by Equation (14)) at x1/d¼ 0.5 for different times, namely, t¼ 5 ms in (a), t¼ 8
ms in (b), t¼ 11 ms in (c), t¼ 14 ms in (d) and t¼ 18 ms in (e). The corresponding deuterium NMR spectra at the same times are
shown in (a’), (b’), (c’), (d’) and (e’). At time t ¼ 0 the profile �(x2) exhibits two inversion walls at x2/L equal to 0.25 and 0.75
combined with one thermal fluctuation. Calculated with B ¼ 4 T, r ¼ 2, L ¼ 200 mm and d ¼ 50 mm.
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comparison with experimental spectra. It turns out

that the spectra of Figures 17 and 19 exhibit more

signal in the central region; however, they are still not

satisfactory because the experimental spectra are flat

in their central region while the calculated spectra

show oscillations. However, accurate analysis of

Figure 20 leads us to conceive this following plausible
scenario. Taking into account the fact that the real

system is much longer than the one simulated here,

one may envisage an initial real state formed by non-

equidistant inversion walls; in this case, different

regions of the sample might reorient differently so

that at particular intermediate times the positions of

the plateaus might be much more distributed than in

the simulations; in other words, the real director
profile is expected to be less regular than the simu-

lated one. Accordingly, this distribution of plateau

position (along the x2 axis) might generate a distribu-

tion of splitting leading to overlapping doublets so

that the undulations in the central part of the spectra

would vanish and a more or less intense flat signal

would be observed.

4. Conclusion

This work was motivated by recent deuterium NMR
data obtained with liquid crystals of low molecular

mass (5CB, 8CB) confined between two parallel plates

and subjected to both electric and magnetic fields as

assumed in this work [6–8]. Some of these data reveal

time-dependent spectra rather different from what is

expected on the basis of a classical model of director

reorientation assuming that the initial director misa-

lignment is due to thermal fluctuations [3–5]. Within
this classical model the reorientation occurs in the

whole sample simultaneously (collective mode),

which manifests in the deuterium NMR spectra by

the occurrence of a doublet with time-dependent split-

ting. Surprisingly enough, in recent NMR results [6–8]

such time-dependent splitting was not always

observed; in some cases, essentially two doublets

with time-dependent intensities and constant splitting
were observed instead.

Since thermal fluctuations alone are not sufficient

to account for the new NMR results [6–8] it appeared

necessary to start with an initial state exhibiting some

local misalignment stable in the presence of the sole

magnetic field. Two kinds of misalignment have been

considered in this work: (i) a local misalignment on a

boundary plate due to inhomogeneous easy axis, and
(ii) inversion walls. We have shown that a local mis-

alignment is the source of a soliton-like mode for

which the aligned region progressively invades the

whole cell, a feature somewhat compatible with the

observed NMR response. Moreover, an inversion wall

gives rise to a cluster-like mode with small spatial

extension but that nevertheless contributes notably

to the development of the doublet with splitting ��0/

2, again in agreement with experimental data. When

one thermal fluctuation is superposed upon the initial

permanent configuration, a competition between the

(cluster/soliton) progressive mode and the collective
mode occurs. The simulations indicate that the collec-

tive mode easily dominates the reorientation when the

progressive mode is generated by an isolated punctual

misalignment on a boundary plate, while it is easily

dominated when the progressive mode is generated by

inversion walls sufficiently close to one another. This

suggests that the density of misalignment needs to be

high enough to dominate the effect of thermal fluctua-
tions, and that this situation is easier to obtain with a

set of inversion walls. Finally, we believe that the

occurrence of inversion walls is the key point in inter-

preting the new results. The problem of the origin of

these inversion walls in the initial state is postponed

for future work.
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Notes

1. It results from the variation of the total free energy

associated with an arbitrary parallel displacement of

the director.

2. Due to the condition ni@ni=@t ¼ 0 only the part of h

normal to the director is effective, the part parallel to

the director cancels with the term lni (in Equation (1)).

3. The free energy density must be integrated over the volume

of the cell. Since we use a two-dimensional model, the

integration along the x3 axis reduces to a multiplication by

the lengthof thecellalongthisaxisassumedtobeequal to L,

the length along the x2 axis (see Figure 1).

4. Note that with the notations used in this work the

angle between the director and the magnetic field is

p/2 - �.
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